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H U M A N - R O B O T  I N T E R A C T I O N

Learning realistic lip motions for humanoid face robots
Yuhang Hu1*†, Jiong Lin1, Judah Allen Goldfeder2, Philippe M. Wyder1‡, Yifeng Cao3,  
Steven Tian1, Yunzhe Wang2§, Jingran Wang1, Mengmeng Wang1, Jie Zeng1,  
Cameron Mehlman1¶, Yingke Wang2#, Delin Zeng1, Boyuan Chen4, Hod Lipson1,5*

Lip motion represents outsized importance in human communication, capturing nearly half of our visual attention 
during conversation. Yet anthropomorphic robots often fail to achieve lip-audio synchronization, resulting in clum-
sy and lifeless lip behaviors. Two fundamental barriers underlay this challenge. First, robotic lips typically lack the 
mechanical complexity required to reproduce nuanced human mouth movements; second, existing synchroniza-
tion methods depend on manually predefined movements and rules, restricting adaptability and realism. Here, we 
present a humanoid robot face designed to overcome these limitations, featuring soft silicone lips actuated by a 
10–degree-of-freedom mechanism. To achieve lip synchronization without predefined movements, we used a self-
supervised learning pipeline based on a variational autoencoder (VAE) combined with a facial action transformer, 
enabling the robot to autonomously infer more realistic lip trajectories directly from speech audio. Our experimen-
tal results suggest that this method outperforms simple heuristics like amplitude-based baselines in achieving 
more visually coherent lip-audio synchronization. Furthermore, the learned synchronization successfully general-
izes across multiple linguistic contexts, enabling robot speech articulation in 10 languages unseen during training.

INTRODUCTION
Imagine sitting across from a robot that can hold a conversation, its 
lips moving in perfect harmony with its words. You would not just 
hear its voice, you would see it speak, just like a human. This blend 
of auditory and visual cues is how we naturally engage with each 
other, and it is why incongruence in lip and audio synchronization 
feels uncanny and unsettling to us (1–4).

Proper lip movements are also crucial for understanding con-
tent. A combination of auditory and visual speech recognition can 
be more accurate than just receiving one or the other (5–7). Humans 
can easily and keenly perceive when visual cues do not match audi-
tory cues. Studies have shown that in noisy environments, observers 
increasingly rely on visual cues from the speaker’s lips, with fixation 
on the mouth region rising substantially under such conditions, 
reaching about 50 to 55% of gaze time (8).

We suggest that for humans to be more willing to communicate 
with anthropomorphic robots, it is essential that such robots have the 
ability to synchronize lips and speech with humans. Without this 
ability, even a robot with an advanced humanoid appearance will ap-
pear lifeless, resulting in the notorious uncanny valley effect (9, 10), 
and people may quickly lose interest or trust in the interaction.

Over the years, researchers have shown that robots with a hu-
manlike appearance are one of the ideal human-robot interaction 

platforms because they can convey emotions and deeper cues through 
facial expressions, allowing people to engage more in emotional 
communication with robots (11–13). Achieving real-time, realistic 
lip-audio synchronization in humanoid robots is a long-standing 
challenge and has been addressed from various perspectives in prior 
work. For example, Ishi et al. (14) proposed a formant-based lip 
motion generation method in teleoperated humanoid robots, map-
ping acoustic speech features to predefined articulatory movements. 
Strathearn and Ma (15) developed a robotic articulation system using 
a precisely engineered mechanical mouth driven by a phoneme-to-
motion control scheme. These efforts demonstrated that accurate lip 
synchronization is achievable through heuristic or rule-based control 
methods. However, such approaches often require extensive manual 
tuning and may lack flexibility for expressive, speaker-dependent, or 
multilingual speech.

Some previous work used the categorization of phonetic symbols 
for lip synchronization and designed predefined lip movements for 
each category, including motion trajectories and duration time (16–
18). Such methods, although simple and transparent, have several 
challenges. First, the design of each lip movement is time-consuming 
and labor-intensive. Second, the lip movement speed of the key-
words needs to be adjusted during the motor execution, which 
requires understanding the speech content and transferring it into 
text to effectively achieve more realistic lip synchronization. Similar 
to attempts in manual design of robot locomotion, manual tuning of 
motion primitives has limits, but it fails to improve with more data 
and experience.

Computer graphics and deep learning researchers have already 
recognized that lip-sync technology can be better achieved by 
learning directly from large-scale speech visual-audio datasets with 
end-to-end neural network models. Prajwal’s Wav2Lip model (19) 
used a generative adversarial network architecture with loss from 
a pretrained lip-sync expert. Lahiri et al. (20) used a video-based 
learning framework to animate three-dimensional (3D) talking 
faces from audio. Digital-only pipelines, such as Voice Operated 
Character Animation (VOCA), Meshtalk, and Codetalker (21–23), 
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learned to map speech to blend shape coefficients of a 3D morphable 
face. End-to-end models that combine speech and identity features 
use recurrent structures. These models capture frame-to-frame dy-
namics and contextual information (24). Some recent implementa-
tions separate identity from speech information, allowing them 
to generate speech for different individuals with high fidelity 
(25, 26). These models can capture context and adapt to differ-
ent speech conditions, producing lifelike visual representations 
of speaking. Although highly effective for avatars, these methods 
assume a differentiable mesh with no actuation limits. In contrast, 
our robot must contend with servo inertia, elastic skin mechanics, 
and collision bounds.

Unlike digital avatars, real robotic faces are constrained by me-
chanical constraints. Motors, servos, and physical linkages dic-
tate the range of motion and the speed at which lip movements 
can be executed. This complexity is compounded by the nonlinear 
kinetics and dynamics of the elastic skin and lips tugging back at 
motors and cladding the face, making some motions kinematically 
difficult or impossible. This complexity introduces new challenges: 
How do you ensure that the generated motor commands trans-
late smoothly into physical actions? How do you account for the 
potential lag between command and execution or the mechanical 
limitations that might prevent perfect replication of synthesized 
movements? These are questions that digital models do not face 
but are critical for real robots to achieve less robotic-looking lip 
motion. To bridge this complexity, we used a learned self-model 
(27–30).

Representation learning aims to find compact, informative rep-
resentations of input data that can generalize across different do-
mains (31–35). Our goal is to bridge the distribution gap between 
2D video outputs (where lips are merely pixels) and a real, mechani-
cally constrained robot face (where lips are physical actuators and 
elastomeric skin). By integrating a variational autoencoder (VAE) 
and a learned robot facial self-model, we aim to transform synthe-
sized video input into smooth and lifelike motor commands that 
ensure synchronized speech and intuitive-looking interactions (36–
39). Here, we seek to move beyond static, preprogrammed actions 
and instead leverage a data-driven learning framework that adapts 
to the complexities of real-world robotic operation, generalizing 
to diverse speech inputs while capturing audio-driven articulation, 
thus setting the stage for more fluid and human-like communica-
tion with robots (Movie 1).

RESULTS
Design of a face with realistic kinematics
Our face robot leverages servo motors, soft silicone face skin, and 
linkage mechanisms with magnetic connectors to enable lifelike lip 
movements and real-time interaction (Fig. 1A). This section pro-
vides an overview of the components and mechanisms used to over-
come the limitations of traditional face robots, which often struggle 
to synchronize their lips while speaking because of limitations in 
degrees of freedom and cable-driven designs (36, 40).

The robot’s design features a high–degree of freedom (DOF) lip 
actuation mechanism, offering 10 DOFs: two pairs for the lip cor-
ners, three for the upper lip, one for the jaw, and two for the lower 
lip. The lip corners are controlled by two stacked motors, form-
ing a 2D movement space, allowing both retraction and outward 
protrusion. This configuration enables complex expressions, such 
as lip puckering, and provides the ability to form tightly sealed 
mouth shapes, which are essential for realistic lip motion dur-
ing speech.

The upper and lower lips are independently actuated in the verti-
cal direction. The upper lip connector turns outward as it descends, 
imitating the movement of the human upper lip that makes a pout, 
such as when the mouth makes a “w,” “r,” or “u” sound, as shown 
in Fig. 2. Likewise, when the lower lip elevates, its underactuated 
rotational axis pivots outward, adapting to the upward motion and 
maintaining a compliant interface with the soft lip. Because these 
actuators can both push and pull the flexible lip skin, they overcome 
a fundamental limitation of traditional cable-driven mechanisms, 
which rely solely on pulling movements.

Our design incorporates magnetic quick-release connectors that 
align the soft silicone skin precisely with the underlying mechanical 
infrastructure (Fig. 1B). Each connector is attached to the face skin 
via super glue and can be easily detached from the four mechanical 
holders. The modularity of the magnetic connectors facilitates easy 
skin replacement and maintenance. Unlike other rigid-body robots 
and serially structured robotic arms, the face robot with soft materi-
als requires constant iteration and position correction during design 
to form a more realistic mouth shape. Therefore, the quick-release 
structure facilitates rapid iteration of the design. In contrast, tradi-
tional cable-driven facial robots need to calibrate the zero-point 
position of the pull cord, which results in low iteration efficiency. 
To enable real-time interaction, the facial robot incorporates high-
resolution RGB (red, green, blue) cameras embedded within the 
eyeballs, providing advanced visual perception and gaze tracking. A 
microphone and speaker allow the robot to achieve conversational 
capabilities. The motor control is processed on edge computing de-
vices housed in the robot’s base, ensuring low-latency responses and 
seamless interaction with users.

Our lip mechanism was meticulously designed to cover 24 conso-
nants and 16 vowels, as demonstrated in Fig. 2. Although languages 
vary in the number of phonemes, English contains approximately 37 
to 41 phonemes, depending on the dialect and analysis, with the glob-
al average across languages being around 30 (41). We classified the 
robot’s viseme into 12 speech-relevant categories, each corresponding 
to specific phonemes based on typical human lip motions (42). These 
shapes include exposing the upper teeth for sounds like /h/, /l/, and 
/n/; biting the lower lip for /f/ and /v/; and forming a pouting shape 
for /w/ and /r/. Unlike traditional face robots that are limited to basic 
mouth opening and closing movements, these fundamental shapes 
serve as building blocks for accurate lip synchronization, enabling 

Movie 1. Overview of learning realistic lip motions for humanoid face robots. 
The song sung by the robot in movie S5 was generated using the Suno platform.
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Fig. 1. Robot head design featuring advanced mechanical articulation. (A) Overview of the facial robot design, highlighting key components for human-robot inter-
action, including the speaker, microphone, high-resolution camera modules, and magnetic quick-release connectors that secure the soft silicone face skin. The connectors 
allow for precise alignment and enable both pushing and pulling motions of the skin, facilitating complex lip movements essential for speech articulation. (B) The external 
appearance of the humanoid robot with soft silicone skin. An Edge computing device is housed in the base. (C) Detailed view of the lip actuation system, showing the 
upper, lower, and corner lip connectors, each attached to the corresponding lip holders. The soft, replaceable face skin is secured using magnetic connectors and can be 
easily detached for maintenance or customization.

Fig. 2. Lip pronunciation movements of the face robot and corresponding phonetic symbols. The robot demonstrates its ability to reproduce key English phonetic 
symbols, such as plosives (/p/ and /b/), bilabials (/m/), and rounded vowels (/u/ and /o/). Each frame captures the typical lip movements achieved through independent 
control of the upper, lower, and corner lips. The results are the basis for the robot’s ability to produce correct lip alignment when speaking.
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fluid human-robot interaction. A detailed demonstration of data col-
lection is available in movie S1.

Demonstrating lip sync through word pronunciation
This section provides an overview of the process used to generate mo-
tor commands for the robot’s lip synchronization, as shown in Fig. 3. 
The pipeline incorporated data collection, training, and deployment 
phases that transformed text inputs into synchronized speech and 
corresponding lip movements. Detailed information about the model 
training process can be found in Materials and Methods.

The initial phase involved collecting video footage of the real ro-
bot performing various lip movements. These included basic mo-
tions such as opening, closing, protruding, and retracting the lips, as 
well as combinations of movements that mimic the shapes formed 
during various phonetic articulations (rounded vowels, plosives, 
and fricatives). As the robot executed each movement, a front-facing 
camera recorded video footage of its lips. These videos were paired 
with corresponding speech-relevant motor commands (A0, A1, … , At), 
which represent the positions and movements of the robot’s actua-
tors during speech. These data were used to train a VAE, which encod-
ed synthesized robot video frames into latent vectors that capture 
the essential features of the real robot’s facial movements.

The deployment phase starts with text input. In this section, we 
used a list of words only, but sentences can be generated by systems 
such as ChatGPT. This text was converted to audio using a text-to-
speech (TTS) system and paired with a synthesized video created by 
Wav2Lip (43). The synthesized video was processed by the encoder 
of the trained VAE to produce latent vectors (L′0, L′1, … , L′t). These 
latent vectors served as a reference for generating motor commands.

The facial action transformer (FAT) was used to produce smooth 
and continuous motor commands based on these latent vectors. The 
transformer encoder takes into account previous motor commands 

(At–2, At–1) to ensure temporal consistency, and the transformer de-
coder predicts the future motor command (At, At + 1) using the pre-
vious latent vectors. This prediction allows the robot to replicate the 
synthesized lip shapes and execute them in real-time.

The result (Fig. 4) showcases the robot’s ability to synchronize its 
lip movements with audio input across various words. For words in-
volving bilabial sounds, such as /m/ in “grandma” or /b/ in “blue,” the 
robot accurately forms the necessary closed-lip shape. This precise 
closure is vital, because any deviation, such as partially open lips, 
would be quickly detected by human observers, leading to discom-
fort or even the uncanny valley effect. In movie S2, we demonstrate 
the robot’s smooth and accurate transitions between different sounds, 
such as from bilabial to vowel sounds in words like “between” and 
“bat.” Thus, the generated motor commands effectively execute these 
transitions without visible lags or abrupt changes, which is crucial for 
maintaining the fluidity of speech. In words that include elongated 
vowels, such as “father” and “spa,” the robot maintains the appropri-
ate lip shape consistently over time. This ability to sustain specific 
shapes without jitter indicates the effectiveness of the synthesized 
image pipeline in generating stable commands for continuous mo-
tion. The precise formation of lip shapes and their synchronization 
with audio prevent common issues such as unrealistic movements or 
delays, which could otherwise trigger discomfort or disengagement. 
The smooth operation enhances the overall human-robot interac-
tion, making the robot more relatable and engaging.

Evaluation of lip synchronization in continuous speech
This section presents a quantitative evaluation of the proposed lip 
synchronization method compared with five baseline approaches. 
The evaluation measures the mean squared error (MSE) between 
the latent vectors of the synthesized images and the latent vectors of 
real robot images. This comparison allows us to assess how closely 

Fig. 3. Self-supervised learning framework for robotic lip synchronization. (A) The data collection phase involves the robot autonomously generating a dataset 
through speech-relevant random commands, capturing a wide array of lip movements with a side-view camera for 3D lip shape data. (B) The deployment process starts 
with text inputs from ChatGPT that are converted to audio, then synthesizing the robot videos. The real robot video and commands are used to train the Robot Inverse 
Transformer, which consists of an encoder and decoder, to produce smooth and accurate motor commands for real robot execution.
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the robot’s movements align with the ideal (synthesized) visual out-
put. A lower MSE indicates a better match, meaning that the real 
robot’s lip motions closely resemble those in the synthesized videos. 
The results were validated across three distinct test sentences, and 
qualitative results are provided in movie S3. The five baselines used 
for comparison are described as follows. The first baseline, nearest-
neighbor (NN) landmarks, used Mediapipe (44) to compute dis-
tances between the synthesized images and a dataset of real robot 
images. The closest matching image from the dataset is selected for 
each frame, representing a feature-based matching approach. The 
second baseline, amplitude baseline (audio-amplitude jaw motion), 
replicates the traditional approach used in many face robots, where 
the jaw opens and closes on the basis of the amplitude of the audio 
wave. It is simple and lacks the nuances needed for complex speech 
articulation. The third baseline introduces a 0.033-s temporal shift 
between the synthesized and real outputs to assess the system’s sen-
sitivity to minor temporal misalignments, simulating potential 
frame drift. The fourth baseline applies a larger temporal shift of 
0.5 s to test the effects of substantial desynchronization and to 
illustrate how severe timing errors degrade alignment quality. 
The fifth baseline, random selection, assigns random motor com-
mands without reference to the input audio or synthesized visual 

features, providing a control condition that reflects the absence of 
meaningful synchronization.

Our method consistently achieved the lowest MSE across all 
three test sentences generated by ChatGPT (provided in Materials 
and Methods), with values of 0.0140, 0.0118, and 0.0136, respec-
tively (Table 1). Our method outperformed the baseline approaches 
across all three test sentences, demonstrating the effectiveness of 
leveraging a VAE and a FAT for accurate, real-time lip synchroniza-
tion. Below, we provide a deeper analysis of the results.

The NN landmarks baseline struggles to match the performance 
of our method because of the limitations inherent in leveraging fa-
cial landmark detection algorithms. Facial landmark detection 
models extract only the contours or shape of the lips and fail to cap-
ture finer details of lip motion. For example, whether the lips are 
open with teeth exposed or open without showing teeth appears 
similar to the landmark-based detection given that both scenarios 
share roughly the same lip shape. However, these differences are 
crucial for human perception, because they convey subtle variations 
in phonetic sounds, such as /f/ versus /a/. This lack of detailed mo-
tion information reduces the ability of NN landmarks to accurately 
reflect real speech dynamics, resulting in poorer performance and 
higher MSE values.

Fig. 4. Robot lip movements across different phonetic contexts. The figure presents synthesized predictions of the robot’s lip shapes for various words alongside real-
world robotic performance, illustrating how the learned model generalizes from simulation to physical execution.
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The amplitude baseline maintains basic alignment between audio 
amplitude and jaw motion. This method only controls 1 DOF, the 
up-and-down movement of the jaw, and therefore cannot replicate the 
complexity of speech-related facial movements, such as lip rounding or 
corner retraction, which are essential for more realistic lip synchroni-
zation. The amplitude baseline performs worse than random selection, 
with higher MSE values in all three sentences. This finding reinforces 
the inadequacy of simple audio amplitude-driven lip movements.

Although random selection lacks any deliberate synchronization, 
it still draws from a real robot dataset containing 20,000 samples 
distributed according to typical speech patterns. This suggests that 
speech-relevant movements are embedded within the dataset, even 
when chosen at random, giving this baseline a slight advantage 
over the amplitude baseline. The distributional nature of the 
random selection baseline highlights the importance of training on 
large, representative datasets. It shows that even without sophisti-
cated algorithms, exposure to diverse, speech-relevant movements 
improves performance compared with simplistic, rule-based systems 
like the amplitude baseline.

The 0.33- and 0.5-s shift baselines reveal the sensitivity of lip 
synchronization to temporal alignment. Even a 0.33-s shift intro-
duces noticeable errors, demonstrating that precise synchronization 
is crucial for achieving more intuitive interactions. The 0.5-s shift 
further emphasizes the importance of real-time audio-visual coor-
dination, given that larger temporal misalignments disrupt the con-
tinuity of movements and lead to higher MSE.

To evaluate whether the proposed lip movements represent an 
improvement, we conducted a survey comparing our method with 
the first two baselines. The results show a higher preference for our 
method (62.5%, P  <  0.0001). Full details are provided in Supple-
mentary Methods.

Multilingual processing capability
To evaluate the adaptability of our self-supervised lip synchroniza-
tion framework, we tested the robot with audio inputs from 11 

languages: English, French, Japanese, Korean, Spanish, Italian, 
German, Russian, Chinese, Hebrew, and Arabic. This experiment as-
sessed whether the system could maintain accurate lip synchroniza-
tion across different linguistic and phonetic contexts. For quantitative 
evaluation, we used latent distance metrics to measure the synchro-
nization accuracy. The latent distances were computed between the 
real-robot lip motion videos and the synthesized reference videos. 
The MSEs and their SDs for all tested languages are plotted in Fig. 5. 
The mean error values for non-English languages, including languag-
es with different phonetic structures, fell within the range of the Eng-
lish1 (English in female voice) error bars. This consistency confirms 
that the system can generalize well, maintaining synchronization ac-
curacy even with diverse phonetic challenges. Languages with more 
complex or nuanced phonetic variations, such as Russian and Chinese, 
showed slightly higher variability but still remained within an accept-
able range. This finding suggests that, although the model is inher-
ently robust, certain languages may challenge it more because of 
the intricacies of their phonetic and articulatory properties. The 
robot’s consistent performance across languages, as compared to the 
English1 baseline, implies that even if training data primarily consist 
of English audio, the model can generalize well to other languages. 
This highlights an efficient method of data collection, where collect-
ing and training on a single, dominant language lip motion can still 
yield good performance across multiple linguistic contexts. The re-
sult of English2 (an older male voice) demonstrates that the system 
could process different voice tones within the same language without 
notable performance drops. This adaptability to different voices with-
in the same language demonstrates the system’s potential for de-
ployment in environments where the robot may need to interact with 
individuals with varied speech patterns, accents, and tones. It dem-
onstrates the system’s robustness and flexibility in real-world applica-
tions. A demonstration video is provided in movie S4, showcasing 
the robot speaking in all 11 languages.

The ability to generalize across languages with diverse pho-
netic and articulatory requirements has notable implications for 

Table 1. MSE comparison of our method and baseline approaches across three test sentences. Lmks, landmarks; BL, baseline; Std., standard deviation; min., 
minimum; max., maximum.

Metric Our method NN Lmks BL Amplitude BL Shift 0.033 s Shift 0.5 s Random selection

Test sentence 1 (327 frames)

 Mean 0.0140 0.4014 0.6265 0.0494 0.3606 0.5366

 Std. 0.0091 0.2742 0.3018 0.0698 0.2908 0.3899

 Min. 0.0025 0.0109 0.1560 0.0032 0.0116 0.0298

 Max. 0.0539 1.4756 1.9580 0.6567 1.2822 2.7344

Sentence 2 (702 frames)

 Mean 0.0118 0.3711 0.7637 0.0563 0.3018 0.5493

 Std. 0.0059 0.2544 0.2382 0.0711 0.2371 0.3904

 Min. 0.0024 0.0172 0.1587 0.0024 0.0078 0.0297

 Max. 0.0411 1.3760 1.7051 0.5513 1.2256 2.4824

Sentence 3 (444 frames)

 Mean 0.0136 0.3896 0.8276 0.0519 0.2966 0.5771

 Std. 0.0062 0.2527 0.2583 0.0647 0.2263 0.3904

 Min. 0.0036 0.0158 0.2642 0.0057 0.0068 0.0362

 Max. 0.0408 1.4316 1.7393 0.5845 1.1162 2.4531
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human-robot interaction in multilingual and multicultural settings. 
The results suggest that training predominantly in one or a few lan-
guages can suffice for a system that needs to perform in many lan-
guages. This markedly reduces the data collection and training 
efforts needed for multilingual capabilities, making the framework 
highly scalable for global applications.

DISCUSSION
The work presented in this paper introduces a comprehensive ap-
proach for making robot lip motion more realistic and less robotic. 
Our robot design, featuring 10 DOFs for lip movement, allows for 
more nuanced and realistic speech production. This high-DOF de-
sign addresses some limitations of traditional robots that primarily 
rely on simplified jaw movements. The capability to form complex 
lip shapes, such as bilabial closures and rounded vowels, enhances 
overall more detailed speech synchronization, providing more life-
like interactions that mitigate some of the risks of the uncanny val-
ley effect.

By integrating a self-supervised learning framework with a ro-
bust hardware design, we have addressed key challenges in lip syn-
chronization that have long limited the capabilities of humanoid 
robots. The approach leverages a VAE, a FAT model, and synthe-
sized video to generate synchronized and realistic lip movements 
from audio input, eliminating the need for predefined kinematic 
models or explicit control algorithms. Our system can generalize lip 
synchronization across multiple languages and even songs (movie 
S5). Our experiments with 11 languages, including phonetic struc-
tures as varied as those in English, Chinese, Hebrew, and Russian, 
indicate that the system performs consistently within the error range 
of the baseline English1. This showcases the robustness of our 
framework and its applicability in multilingual environments. 
Our experimental results demonstrate that the proposed system 
can replicate complex human lip movements, including bilabial clo-
sures, elongated vowels, rapid transitions, and fricative and affricate 
sounds. The integration of synthesized images and the mapping 
of these images to motor commands allow for seamless and con-
tinuous articulation.

The performance of our system is far from perfect, and much 
remains to be improved. Improvements can be had by increasing the 
number of degrees of freedom in the appropriate ways, increasing 
the amount of training data and the context depth of the models, 
and finding a better loss function that more correctly captures the 
type of congruence that matters most to humans. In addition, hu-
man speakers routinely begin shaping the lips before any sound is 
emitted, typically 80 to 300 ms in advance, so that the vocal tract is 
already in the correct configuration when the acoustic onset occurs 
(45, 46). We believe that adding a module trained on fully aligned 
audio-video-actuator data is an important next step that could fur-
ther reduce residual asynchrony and enhance performance.

This work marks an attempt in the quest to create robots that not 
only function but also connect with us on a human level. Imagine 
robots that can hold a conversation with a smile, respond with the 
same subtle lip movements we take for granted, and learn from their 
interactions to become even more lifelike over time through self-
supervision. Applications abound in areas like education, cognitive 
stimulation, and even elder care for slowing cognitive decline (47, 48).

Along with this utopian vision, however, come risks. As robots 
become more adept at connecting with us at an emotional level, this 
ability could be exploited to gain trust from unsuspecting users, 
especially children and the elderly. Even well-meaning applications 
could potentially create heightened emotional connections to the 
detriment of normal social relationships (49–51). Thus, designers 
must guard against new forms of emotional manipulation and 
overtrust risks that are especially acute for children, older adults, 
and people with cognitive decline.

We conclude that the ability to create physical machines that are 
capable of connecting with humans at an emotional level is matur-
ing rapidly. The robots presented here are still far from natural, yet 
one step closer to crossing the uncanny valley.

MATERIALS AND METHODS
Self-supervised learning framework for face robot lip sync
The development of robots capable of human-like interaction involves 
teaching the robot to synchronize its lip movements with audio. 

Fig. 5. Multilingual lip synchronization performance. The mean latent distance error for each language is shown with error bars representing the SD. The sample size 
n for each language, shown below the x-axis labels, reflects the number of video frames in the test sentence for that language. The results demonstrate that synchroniza-
tion errors for all non-English languages remain within the range of English1, indicating robust cross-linguistic generalization.
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Achieving this synchronization traditionally involves large amounts 
of labeled data, which can be expensive and time-consuming to col-
lect. To address these challenges, we proposed a self-supervised learn-
ing framework that eliminates the need for manual labeling. Our 
framework combines a VAE and FAT to generate speech-relevant mo-
tor commands that enable fluid lip movements synchronized with 
audio (Fig.  3). The proposed system allowed the robot to autono-
mously learn the mapping between audio signals and motor com-
mands, thereby producing humanlike lip motion during speech.

At the beginning of the learning process, the robot lacked speech-
relevant motor commands (i = 0). To explore its range of motion, it 
engaged in motor babbling, where it performed random facial 
movements across its DOFs. These movements were captured by an 
RGB camera that recorded each frame as Xi, representing the state of 
the robot’s face. This process helped the system explore a variety of 
lip shapes, such as pout and pucker, essential for reproducing speech 
sounds. The motor babbling data can be represented as a sequence 
of state-action pairs

where Xt is the facial state at time t, At is the corresponding motor 
command, and N is the total number of frames collected during the 
robot’s random exploratory movements. This phase provided the 
initial dataset that would later be augmented and refined through 
synthesized videos. We generated synthesized speech videos using 
the collected motor babbling videos. First, text was converted into 
an audio waveform using a TTS system. This audio was then used by 
the Wav2Lip algorithm to generate a video of a speaking face that 
was synchronized with the audio. From this synchronized video, we 
extracted individual frames (X′t) and paired them with their corre-
sponding audio segments (Yt) at each time step t.

where X′t is the synthesized video frame and Yt is the corresponding 
audio input. M is the total number of frames in the synthesized da-
taset generated by the TTS system and Wav2Lip. These synthesized 
data provided target speech movements for the robot to imitate.

VAE was trained to model the latent spaces of real and synthe-
sized videos. Given an input frame Xt, the encoder network of each 
VAE maps it to a latent vector

Once the VAE was trained, we generated speech-relevant com-
mands by matching latent vectors between real and synthesized 
data. For each synthesized video frame X′t, we computed the latent 
vector L′t. We then compared this latent vector with the latent 

vectors of all real robot frames Li from the VAE using the Euclidean 
distance as the similarity metric

The closest matching latent vector L∗
i
 was identified as

The motor command A∗
i
 corresponding to the closest latent vec-

tor was saved as a speech-relevant command. Given that the Gaussian 
noise added to the data ensures variability, this matching process 
was repeated across multiple iterations. For each iteration i > 0, the 
dataset was further refined, progressively approaching more realistic 
speech motor patterns. In our experiments, four iterations (i = 4) 
produced satisfactory results, where the robot’s generated speech tra-
jectories closely resembled human speech movements.

VAE model
The VAE model was designed to encode facial robot videos into a 
shared latent space for synthesized and real videos, capturing essen-
tial visual features for downstream tasks, such as facial action pre-
diction in robots (Fig. 6). The VAE model was trained using robot 
images consisting of 20,000 real video frames and 5173 synthesized 
video frames. The encoder extracted latent features from the input 
images and mapped them to a latent space characterized by a mean 
(μ) and a log variance (σ). We sampled a latent vector from this la-
tent representation, which was then passed through the decoder to 
reconstruct the original image. The objective was to train the VAE 
to effectively learn a probabilistic latent representation of the ro-
bot images, enabling the model to generate the latent vectors for the 
FAT model.

During training, we first pretrained the VAE model using only real 
images. This pretraining phase helped the model learn an accurate 
latent representation of the real-world data distribution. After pre-
training, we fine-tuned the VAE using hybrid data, which included 
both real and synthesized images. Specifically, the initial pretraining 
used 20,000 real images to train a real VAE model, which served as a 
baseline for capturing the underlying features of the real images. The 
latent vectors for these real images were obtained using the real VAE 
model. These latent vectors were used to evaluate the quality of the 
latent space generated by subsequent models.

In the fine-tuning phase, we trained the VAE with hybrid data 
consisting of both real and synthesized images. This hybrid VAE was 
trained to map both real and synthesized images to the latent space 
while ensuring that the latent space remained consistent with the pre-
trained real VAE model. The distance between the latent represen-
tations of the real and synthesized images was computed to evaluate 

babble =
{(

Xt ,At

)

∣t=1, … ,N
}

(1)

syn =
{(

X
�
t
,Yt

)

∣t=1, … ,M
}

(2)

L
t
=EncoderVAE

(

X
t

)

, L�
t
=EncoderVAE

(

X
�
t

)

, L
t
, L�

t
∈ℝ

16 (3)

d
�

L
�
t
, Li

�

= ‖L
�
t
−Li‖2 (4)

L
∗
i
= arg min

i
d
(

L
�
t
, Li

)

(5)

Fig. 6. Variational autoencoder architecture for facial robot image encoding. The mean latent distance error for each language is shown with error bars representing 
the SD. The results demonstrate that synchronization errors for all non-English languages remain within the range of English1, indicating robust cross-linguistic general-
ization.
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how well the hybrid VAE aligned with the original real VAE. The ob-
jective was to minimize the distance between the latent vectors gener-
ated by the hybrid VAE and those generated by the real VAE, ensuring 
that synthesized images can be accurately mapped into the same la-
tent space as the real images. The final result is a fine-tuned VAE 
model that can effectively map synthesized images into a meaningful 
latent space of real images, enabling further downstream tasks.

The training loop was designed to iteratively update the VAE’s 
parameters using a combination of the MSE loss and a Kullback-
Leibler (KL) divergence penalty. The MSE loss measures the differ-
ence between the reconstructed image and the ground-truth image, 
encouraging the model to produce accurate reconstructions. The KL 
divergence regularizes the latent space to resemble a standard Gauss-
ian distribution, ensuring smoothness and consistency in the latent 
representations. These two loss components were combined with 
scaling factors, allowing for control over the influence of each term 
during training.

Facial action transformer
The FAT was designed to generate precise, smooth, and temporally 
consistent motor commands for facial robots, enabling accurate lip 
synchronization in speech. FAT leveraged a transformer-based ar-
chitecture to capture temporal dependencies in sequential data, 
allowing it to perform complex lip movements in robotic speech 
smoothly, as shown in Fig. 7.
Architecture and model design
The FAT model consists of an encoder and a decoder optimized to 
process historical and contextual information from previous motor 
commands while predicting future actions. Specifically, the model 
operates by encoding a sequence of preceding motor commands, 
allowing it to “remember” the recent positions and configurations of 
the robot’s lips. The encoder-decoder structure enables the model to 
predict continuous motor trajectories that more closely mirror 

human lip movements, thereby mitigating jitter or erratic shifts in 
facial expressions.

FAT began by embedding the encoder and decoder inputs 
into a high-dimensional space, enabling it to learn and store intri-
cate spatial-temporal information necessary for realistic lip artic-
ulation. Positional embeddings were added to retain the sequence 
order, which was crucial for capturing the temporal progression of 
speech movements. The encoder processed past motor commands, 
generating a latent representation that encapsulated the recent his-
tory of lip configurations. This representation was crucial for en-
suring continuity between past and future movements, especially in 
transitions between phonemes, which required the model to antici-
pate and prepare for upcoming movements on the basis of the cur-
rent speech context.

The decoder used two future latent vectors generated by the VAE 
encoder, along with the current latent vector from the FAT encoder, 
to predict smooth and precise motor commands. By incorporating 
these consecutive latent states from the target frames, the decoder 
avoided the jitter and instability arising from a discrete inverse model. 
This approach ensured smoother transitions and continuity in lip 
movements, substantially improving the realism and fluidity of speech 
articulation compared with our previous work.
Training process
The FAT model was trained on a dataset comprising 20,000 real ro-
bot frames. Each frame was annotated with motor commands cor-
responding to the positions of various actuators within the robot’s 
lips, jaw, and corners of the mouth. To increase the diversity and 
scale of the dataset, these frames were duplicated and reversed, cre-
ating a training set of 40,000 frames. This augmentation strategy al-
lowed the model to learn both forward and backward movements.

The training dataset for FAT comprised latent vectors produced 
by the VAE encoder from real robot video sequences. These la-
tent vectors encoded the robot’s lip movements in a compact and 

Fig. 7. The architecture of the FAT model for robotic lip synchronization. The transformer encoder processes previous motor commands, At–2 and At–1, embedded and 
enhanced with positional encodings to capture temporal dependencies. The transformer decoder uses the latent representations Lt, Lt + 1 from the VAE, which are also 
embedded with positional encodings, to predict future motor commands At and At + 1. This dual-input structure enables FAT to generate smooth and accurate motor com-
mands that synchronize with audio input, minimizing jitter and ensuring smoother transitions between lip shapes.
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information-rich form, preserving the details necessary for accurate 
lip synchronization. The training process optimized a composite 
loss function, including mean absolute error (MAE) loss and a 
specialized closure loss. The MAE loss ensured that predicted motor 
commands closely matched the target commands, reducing the 
overall prediction error across frames. At represents the target mo-
tor command at time t, and the MAE loss can be defined as

where N is the length of the sequence, At denotes the target actuator 
positions at t, and Â

t
 denotes the corresponding predicted actuator 

positions.
To ensure precise lip closures during phonemes that require full 

lip contact, such as “b,” “p,” and “m,” a closure loss term was intro-
duced. The closure loss encouraged the model to predict tighter lip 
closures by penalizing deviations from target positions, especially in 
sequences where complete closure was critical for correct speech ar-
ticulation. Incomplete closures are easily detectable, and even minor 
errors in such frames can disrupt the perceived synchronization. 
The closure loss is defined as follows

where Ât,i and At,i represent the predicted and target values for spe-
cific actuators involved in lip closure at t. Actuator indices 0, 1, and 
4 correspond to the key components controlling lip closure: the up-
per lip, lower lip, and the jaw. Further, k0, k1, and k2 are constants 
that control the weight of the closure penalty, emphasizing the im-
portance of complete closure in key frames. The total loss function 
combines the MAE and closure loss, where λ is a scaling factor that 
balances the two loss components

This composite loss function forced the model to prioritize real-
istic closures while maintaining overall accuracy, ensuring that 
speech-relevant movements were visually coherent and contextually 
synchronized with audio.

Data collection for word-level lip 
synchronization experiments
The Results presented an analysis focusing on 12 representative 
words to highlight the robot’s speech synchronization capabilities. 
Below, we describe the specific reasons for selecting each word 
group and explain why these words presented unique challenges for 
robotic articulation. The six groups were selected to represent key 
phonetic features in speech, emphasizing the diversity of sounds. 
Each group includes words that stress specific aspects of speech pro-
duction, such as bilabial, labiodental, and fricative sounds, and dy-
namic vowel-consonant combinations.
Group 1: Mama, papa, grandma, grandpa, brother, and sister
This group contains kinship terms that are common in everyday 
conversations. Most words in this set contain bilabial sounds (for 
example, “m” and “p”), which involve both lips coming together. The 

bilabial closure and release for sounds like “m” and “p” must be 
smooth and tightly synchronized with the audio. If the robot fails to 
achieve a complete lip seal, the sound will appear inconsistent with 
the lip motion and disrupt intelligibility. Words such as “papa” and 
“mama” are especially demanding because they require the robot to 
alternate between open and closed lips multiple times within a short 
duration. Our model’s ability to capture temporal dependencies 
using the transformer-based decoder is critical in this context. The 
FAT encoder integrated the history of previous motor commands, 
enabling the model to anticipate upcoming closures and releases. 
This ensured that the transitions between bilabial articulations oc-
curred smoothly and without jitter.
Group 2: But, between, beyond, and blue
This group explores words that combine bilabial stops with varied 
vowel lengths, posing additional demands on the system’s ability to 
coordinate lip rounding with rapid consonant release. For example, 
the word “blue” involves not only an initial bilabial closure but also 
sustained lip rounding for the long vowel sound, requiring the ro-
bot to maintain specific lip configurations over an extended duration, 
such as the motion of “tween.” Our framework ensured continuous 
motor trajectories by processing multiple frames simultaneously, 
ensuring that transitions between sounds like “b” and long vowels 
remained correctly synchronized across frames.
Group 3: Mat, hat, at, and cat
Short words ending in plosive sounds, such as /t/, demand precise 
timing and coordination. A plosive consonant requires the lips to 
close briefly and then release with a sudden burst, creating sharp 
auditory and visual cues. The rapid nature of these transitions pre-
sented a distinct challenge, because any delay or misalignment be-
tween lip motion and sound production is easily noticeable.
Group 4: Father, spa, car, and far
Words containing elongated vowels challenge the robot’s ability to 
sustain specific lip shapes over time. For example, the word “spa” 
involves both lip rounding and an open vowel, requiring the robot 
to hold the rounded position for a longer period without visible jit-
ter or instability. Similarly, words like “far” demand the smooth con-
tinuation of an open mouth shape across the entire word. The FAT 
decoder’s ability to predict sequential motor commands over mul-
tiple frames ensured that the robot maintained stable lip shapes 
throughout the production of elongated vowels.
Group 5: Boy, bat, map, and pat
This group of words presents rapid transitions between bilabial and 
plosive sounds. For example, “bat” requires the robot to start with a 
bilabial closure for /b/ and then release into an open position for the 
vowel /a/ before concluding with a plosive /t/. These sequences de-
mand precise timing and coordination to ensure smooth, synchro-
nized transitions.
Group 6: Choose, jeep, chop, and jump
This group focuses on fricative and affricate sounds, such as /ch/ 
and /j/, which require showing upper and lower teeth. The robot 
must achieve these configurations smoothly without introducing 
unnecessary tension or abrupt movements. The results demonstrate 
that our VAE captured the nuances of fricative and affricate move-
ments, ensuring that the robot generated fine-grained motor com-
mands that reflected partial constrictions accurately.

The comprehensive tests documented in movie S2 confirmed 
that our framework effectively generates more accurately synchro-
nized lip movements across a diverse range of words. The groups 
were designed to evaluate the system’s ability to handle bilabial 
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t
∣ (6)

ℒclosure=k0

N
∑

t=1

max

(

0, Â
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closures, vowel elongations, plosive bursts, and fricative constric-
tions, all key elements of human speech production. Our results 
demonstrate temporal consistency, precision in rapid transitions, 
and flexibility across speech patterns. These findings highlight the 
robustness and flexibility of our framework, establishing it as a via-
ble solution for achieving more human-like speech synchronization 
in robots.

ChatGPT-generated test sentences
We used ChatGPT (OpenAI, 2023) to generate three test sentences 
that were used to evaluate our method’s effectiveness in real-time lip 
synchronization. The use of ChatGPT allowed for the creation of 
varied, conversational phrases that simulate responses a conversa-
tional AI might provide. The generated test sentences are as follows:

1) “My programming allows me to process data and respond to 
queries, but the concept of thinking about existence is complex. I 
understand it as a collection of data and programmed responses.”

2) “Emotions and consciousness are not within my current capa-
bilities. They require subjective experiences and self-awareness, 
which are unique to organic life forms. My design is to assist and 
learn, not to feel or be conscious.”

3) “Value is a human concept, often subjective. My purpose is to 
be efficient and helpful. Comparing my value to a human’s is like 
comparing different tools for different tasks. Each has its own pur-
pose and utility.”

These sentences, designed by ChatGPT, allowed us to assess model 
performance with phrases involving both abstract concepts and 
conversational language.

Statistical analysis
Statistical analyses were performed in Python (version 3.10) using 
NumPy, SciPy, and StatsModels. For multilingual and frame-based 
evaluations, latent distance and reconstruction errors were com-
puted frame by frame between the predicted and ground-truth lip 
trajectories. Because each language contained one test sentence of 
varying duration, the sample size n corresponds to the number of 
video frames in that sentence. Unless otherwise stated, error bars 
represent the SD across all frames in a test sample, and the value of 
n is shown beneath each label in the corresponding figure.

For the human-participant evaluation, categorical preference 
data were analyzed using a chi-square goodness-of-fit test to 
compare selection frequencies against chance level (p0  =  1/3). 
Pairwise method comparisons were performed using two-
sided binomial tests. Effect sizes were quantified using Cohen’s 
w, Cramér’s V, and Cohen’s h, following established guidelines 
for categorical data. All reported P values are uncorrected un-
less specified otherwise. No assumptions of normality or homosce-
dasticity were required because only nonparametric frequency-based 
tests were used.
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