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Abstract— This paper describes a novel hierarchical system
for shared control of a humanoid robot. Our framework
uses a low-bandwidth Brain Computer Interface (BCI) to
interpret electroencephalography (EEG) signals via Steady-
State Visual Evoked Potentials (SSVEP). This BCI allows a
user to reliably interact with the humanoid. Our system clearly
delineates between autonomous robot operation and human-
guided intervention and control. Our shared-control system
leverages the ability of the robot to accomplish low level tasks
on its own, while the user assists the robot with high level
directions when needed. This partnership prevents fatigue of
the human controller by not requiring continuous BCI control
to accomplish tasks which can be automated. We have tested the
system in simulation and in real physical settings with multiple
subjects using a Fetch mobile manipulator. Working together,
the robot and human controller were able to accomplish tasks
such as navigation, pick and place, and table clean up.

I. INTRODUCTION

Shared autonomy is when a human and robot agent
collaborate to accomplish a task utilizing their respective
strengths. As humanoid robots become more capable, the
mode of communication/control between human and robotic
agents becomes increasingly important. Humans faced with
complex, multi-DOF tasks involving a humanoid can easily
become overloaded with navigation, control, and task choice
selections. Simplifying this interface is imperative for smooth
cooperation and control of humanoids. In this paper, we
explore using a Brain-Computer Interface (BCI) as the mode
for communicating human intent and interests to the robot
as illustrated in Figure 1. BCI, which measures human brain
activities, can be used to generate high-level direction from
humans while the robot can autonomously handle details
related to navigation, control and task-specific actions. We
have devised a hierarchical system that divides complex tasks
into subtasks allowing the user and a humanoid to jointly
accomplish these tasks.

BCI has been an active area of research for a number of
decades, yet it has had limited real-world use outside of spe-
cialized applications. One of the problems with BCI is false
response rates [1]. Further, surveys of users of BCI systems
(typically participants of research experiments) highlight that
the systems can be fatigue-inducing and frustrating especially
because it can be unreliable. In addition, BCI has a limited
communication bandwidth [2]. The amount of information
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Go to the left table.

Pick up the drill.
What should I grab?

Where should I go?

Where do I take it?
Bring it to me.

...

Go to the table.

Pick up the drill.
What should I grab?

Where do I go?

Where do I take it?
Bring it to me.

...

Fig. 1: Our shared autonomy system allows a robot and
human to work together to accomplish a task. The robot
has sensing, navigation, and manipulation capabilities. The
user provides high level commands via a BCI.

(bits-per-minute) derived from typical BCI systems is very
low. These, among other reasons, make it difficult to come
up with a wide range of use-cases for BCI systems. In this
paper, we explore a more reliable BCI interface and address
the low bandwidth problem by using shared autonomy and
a hierarchical task decomposition approach.

With increased reliability, BCI provides an intriguing
method for controlling remote agents. Human operators can
easily become overloaded as task responsibilities increase.
By using a BCI, possibly in concert with other interfaces,
a human operator can begin multi-task control of multiple
agents, some controlled by more traditional interfaces, and
others using a simple BCI. In addition, BCI recordings
typically do not require physical motion from the user which
makes BCI suitable for humans with disabilities. Hence, this
work finds high applicability in the Assistive Robotics space.
Beyond that, this work takes steps towards using BCI as
a complementary input modality to enhance human-robot
interaction even for able-bodied people. While keyboard,
joystick, mouse, gesture, and voice are some existing modes
of communication (conventional input devices), BCI could be
added to this list. A user in a control room built to accomplish
a complex task with different knobs/controls but just two
hands can use the BCI as a complementary input modality.

This work creates an infrastructure that enables any robotic
system to be configurable to take BCI inputs enabling
humans to collaborate with robots to accomplish tasks in a
robust way. Our hierarchical system uses Steady-State Visual
Evoked Potentials (SSVEP), a reliable BCI technique, to take
guidance cues from the human whenever the robot is uncer-
tain about the high level task while the robot autonomously
handles the low-level tasks such as navigation, grasping, and
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manipulation.
Tasks are typically subdivided into modules for the robot

to achieve and whenever the robot is unsure of what to do,
it presents the options as multiple flashing visual signals
from which the user can make a choice using the BCI.
To demonstrate the strength of this infrastructure we have
designed an experiment for a home-assistant robot which
accomplishes different tasks by polling the user for choice
selection between different options. Robot strengths are
leveraged to the fullest as the user input is only polled
occasionally to resolve the robot’s uncertainty.

The framework presented can use different BCI techniques
at different layers to get human input into a robotic system.
As new and different BCI technologies are developed, they
can be interchanged and adopted into different layers of the
hierarchy. Our key contributions are:

• Novel use of a BCI to control a humanoid robot doing
a variety of tasks.

• Shared Autonomy system that leverages the strengths
of both humans and robots.

• A hierarchical system that divides complex task into
subtasks, allowing the robot to focus on simpler primi-
tive tasks, while allowing the human operator to control
task flow and decision making.

• Intuitive screen-based visualization of the task to en-
hance operator understanding and interaction.

• Experiments with human subjects, including quantita-
tive and qualitative measures of success.

• A benchmark simulated environment setup for assessing
robustness of BCI-controlled robotic applications and
tracking the growth of the underlying BCI technologies.

II. BACKGROUND AND RELATED WORKS

A. Brain-Computer Interface

There are different BCI technologies for monitoring brain
activities [3] [4] [5] [6] [7] [8]. Two factors influence
our choice of BCI technology for this project. The first
factor is Portability. EEG and fNIRS are typically portable
systems while the last four require expensive, immobile and
elaborate setup. The second factor is non-invasiveness to
avoid surgical interventions in acquiring human brain signals.
Invasive techniques like electrocorticography (ECoG) and
intracortical electrode recordings were ruled our for this
project. EEG and fNIRS meet these two key requirements
but EEG was our preferred choice because fNIRS has an
inherent detection delay since the measured hemodynamic
response occurs a few seconds after the originating brain
activity.

There are many different neural response patterns that the
EEG can monitor and measure. These include: Steady-State
Visual Evoked Potentials (SSVEP) [9], Motor Imagery (MI)
measuring sensorimotor rhythms [10], Error related Poten-
tials (ErrP) [11] [12], P300 responses [13], and Affective
States [14] among others. ErrP, MI and affective states are
naturally occurring signals while SSVEP and P300 require
stimuli to elicit a neural response.

Naturally occurring brain signals are appealing because
they do not require stimuli generation but their characteristics
vary widely depending on the user, time of day, and environ-
mental conditions. This creates a need for a highly controlled
environment and significant training time to tune a classifier.
SSVEPs are generated in the brain when humans stare at a
visual stimulus oscillating at a frequency above 6 Hz. A BCI
user can modulate the SSVEP by focusing attention on one
of multiple stimuli presented to the user. SSVEP has been
used for various applications including, typing from virtual
keyboards [9] , browsing internet (combined with P300) [15],
games [16] etc. We focus on SSVEP because it requires
no training or calibration, its analysis is fairly simple and
reliable, a robust response can be achieved independent of
environmental setup and it provides high temporal resolution
signals for analysis [17]. These advantages largely outweigh
the requirement of stimuli generation. Since our system only
requires user input at a few discrete points, discomfort from
the flashing stimuli is not an issue.

B. Shared Autonomy

Brain-controlled robots can be broadly classified into two
classes based upon their operational modes [18]. In the
direct-control setting, the robots get control signals from
humans continuously throughout the entire duration of the
task. For example, brain signals can be classified into three
motion commands: left, right, forward for a BCI-controlled
wheel chair [19] or motion commands for cursor control [20].
Here, the robots are quite simple with little intelligence; the
success of the task depend entirely on the human through
the BCI. This puts a large burden and requirements on the
BCI system which are typically imperfect and limited both
in accuracy and bandwidth leading to slow and uncertain
performance. With robots becoming cheaper, more capable
and reliable, the performance of brain-controlled systems
can be enhanced by leveraging the robot intelligence. In the
shared-control setting, the robot system takes a more active
role in accomplishing the given task; the robot is able to
autonomously carry out tasks only occasionally getting the
user’s intention [21]. This alleviates fatigue associated with
the burden of continuous BCI control by the user.

C. BCI-Robotics Application

While shared control typically entails humans and robot
taking turns to drive the system [22], we focus on the
application where the robot does the majority of the work
while the user only provides guidance to resolve uncertainties
or assign tasks. State-of-the-art robots can autonomously
execute a diverse range of tasks but can run into cases
where uncertainties can be difficult to resolve on their own.
The human input through the BCI interface is invaluable
for resolving such uncertainties. For example, [23] explores
integrating human analysts with computer vision systems to
more rapidly label images; reliable human agents handle
tasks that the computer vision system outputs with low
confidence.
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Fig. 2: Flow diagram showing task decomposition for naviga-
tion and grasping objects with ”uncertainty-resolving” nodes
that gets human input via BCI. (a) An example decomposi-
tion of table clearing task into subtasks. (b) Expanded node
for resolving uncertainty.

While [24] demonstrated BCI robot control on a non-
navigational task (object manipulation), our system incor-
porates more robotic skills including vision, navigation, and
autograsping as suggested in their discussion of future work.
While their system uses low-level control to teach the robot,
we focus on leveraging a capable robot to achieve a reliable
BCI-guided system. Also, while they use custom LED to
generate the SSVEP signal, we use in-scene stimuli. In
another similar work [25], P300 signals are used to control
a humanoid robot. Unlike P300 which requires training a
different classifier for each user, we use SSVEP which works
with all users without any training.

Our work is similar to the work of Choi and Jo [26]
but differs in approach, paradigm, and implementation. Their
approach focuses on an inexpensive BCI interface system for
humanoid robot navigation and recognition. The hierarchical
framework presented in our work looks beyond specific
specialized cases but at the broader goal of making any
robotic system to be configurable to take BCI inputs and still
work reliably. In our system, we use BCI signals exclusively
as human input to the system; in contrast, [26] also uses other
inputs methods like ”head-turns”, which may be infeasible in
some settings or impossible for severely disabled subjects.
Finally, we’ve built a much higher level of autonomy into
our humanoid robot to enable the robot take an active role
in the shared autonomy framework. While Choi and Jo use
limited navigation and 2D single object recognition, our
robot autonomously maps and navigates its environment,
senses its world using 3D vision processing and manipulates
multiple diverse objects.

III. METHODOLOGY

A. Hierarchical Framework

Since robotics tasks can be decomposed into different
permutations and combinations of subtasks (task abstraction)
[27], we are able to create an ordered hierarchy of subtasks.
For example, a food delivery task can be decomposed into
get food, navigate to customer, deliver food. Other tasks such
as a table cleaning task can share and use some previously
defined subtasks leading to extendable hierarchical structure.

In our hierarchical framework, there are nodes that
present the robot with multiple, equally valid options. These
”uncertainty-resolving” nodes take as input the options and
prompt the human agent who then returns the chosen option
using the BCI. These nodes present the input options as
visual stimuli and analyzes the human agent’s brain signal to
determine the preferred option. Figure 2 shows the flow for a
sample task of moving to a table and grasping an object and
placing it in a new location. By reconstructing the building
blocks of our hierarchical system, users are able to create
various composed task pipelines.

B. Stimuli Generation

When a robot is unsure of the next stage of a task, it can
present the options to the user for resolution. Since we use
SSVEP as the BCI communication method, these options
are presented to the user in visual form (as oscillating visual
stimuli). For example, if a robot is unsure of its destination,
it can present a map to the user with blinking stimuli overlaid
at different locations on the map. Figure 3 shows a typical
environment for a home-assistant robot, with multiple rooms,
tables within rooms, and objects on tables. Figure 4 shows
visual stimuli overlaid on the map to allow a user to choose
a location to navigate to. By focusing on one of the stimuli,
the SSVEP signal is generated at the occipital region of the
brain whose frequency indicates the selected choice. For our
system, we split the choice frequency band 6-9.9 Hz across
the 2-4 options. For example, 3 options would blink at 6.6,
8.5 and 9.9 Hz. Once the navigation is completed, the robot
can present choices for which table to approach, and then
choices for which object to pick up, and finally where to
place the object.

Fig. 3: Model Home environment where robot can interact
with human to carry out task in simulated world.

Brain Signal Collection and Processing: We use a
wireless EEG Headset–the B-Alert X10 System Sensor–with
electrodes located at O1, and O2 (based on the international
10-20 system) with left and right earlobes as the reference
and ground. Referential recordings were acquired from both
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Fig. 4: Home map overlayed with visual stimuli for SSVEP
user detection. Each stimulus blinks at different frequency

occiptal electrode sites. The sampling rate was 256 samples
per seconds for all channels. The headset wirelessly com-
municates the signals to the software on the computer. The
accompanying driver for the device runs on Windows so we
needed to transfer the EEG signals to a Linux based platform
that runs the entire setup. We use the Lab Streaming Layer
(LSL) software framework to stream the EEG signal for real-
time processing.

Data is filtered with a bandpass from 2.5 Hz to 30
Hz. After filtering, we use canonical correlation analysis
(CCA) to pick the frequency which is most correlated with
the brain signal. The key parameters for SSVEP analysis
include channel location, window length, and the number of
harmonics[28]. We record brain signals for 5-12 seconds and
use 3 harmonics for the CCA analysis.

We recall the CCA definition from [29]: given two sets of
data X and Y generated from multivariate random variables
x ∈ RDx and y ∈ RDy, CCA finds a projection for each set
such that their projections are maximally correlated.

(w∗
X , w∗

Y ) = argmax
wX ,wY

corr(wT
XX,wT

Y Y ) (1)

The recorded EEG signals are passed in as variable X .
For Y , we generate sinusoidal data corresponding to each
given frequency fi and also concatenate some harmonics
as Yi. Using CCA, we get the optimal correlation value:
corr(w∗

XX,w∗
Y Yi). The frequency which correlates the most

with the brain signal determines the choice of the user:

C = max
i

corr(w∗
XX,w∗

Y Yi) i = 1, 2, ...N (2)

Once a user’s intents are detected for the high level tasks,
the robot executes until the next uncertainty and the user is
queried.

C. Robot Autonomy

We build a number of skills into the robot to allow it
to function autonomously. These include navigation, object
segmentation and geometric reasoning (vision), and an ability
to pick and place objects (manipulation). All of these skills
are needed to perform tasks in a home setting.

Navigation: A home-assistant robot has to be able to nav-
igate in its environment. We use a ROS SLAM algorithm
package which allows the robot (in this paper a Fetch
Robotics mobile manipulator) to use its laser scanner to
accurately build an environment model and navigate the
environment from source location to destination. A sample
map of the environment generated can be seen in Figure 5b.
Vision: Given a table-top scene with multiple objects and lit-
tle clutter, the robot segments out the different objects on the
table using PCL’s [30] implementation of euclidean cluster
extraction. Each of these clouds are potential candidates to be
interacted with. If the robot is unsure of which one to grasp,
it prompts the user to select one via SSVEP stimuli. We
restrict the clutter in the scene to the level our segmentation
can handle. Though not fully implemented for this work, the
robot can disambiguate cluttered scenes in stages, starting
with coarse over-segmentation followed by more granular
segmentation of the user-selected coarse segment.
Manipulation: Once the robot is certain which point cloud
to interact with (i.e. grasp), we use an online grasp planner to
find a suitable grasp. First, we build the object’s complete 3D
model using the partial view from the robot. To do this, we
use a Deep Learning, CNN-based shape completion method
developed in our lab that can complete the occluded region
of the object given the partial view [31]. Compared to object
recognition modules that require a database of known objects
apriori, this technique makes the vision system generalize
to novel objects the robot might encounter. The shape
completion method returns a smoothed 3D mesh which can
then be used for online grasp planning. We use the online
grasp planner in GraspIt! [32] on the detected object. Online
grasp planning is important since the robot may not know
the object it will encounter ahead of time. With the list
of possible grasps generated by GraspIt!, we use MoveIt!
[33] for arm trajectory planning. This enables us to perform
arbitrary pick and place operations.

These skill sets make up the robot component of the
shared autonomy system. Using these embedded skills of the
robot, the user can effectively control and guide the robot to
accomplish many tasks needed from a home-assistant robot.

IV. EXPERIMENTS

To test our framework, we created environmental setups
(both in simulation and real world) that can serve as a
benchmark for testing and reporting the performance of BCI
systems for robotics application. In these setups, we have a
home-assistant robot that can be assigned different tasks in
the home environment. The accompanying video submission
also gives an overview of the setup and experiments.

A. Simulated Experiment

On a mock-up Fetch Robotics [34] building model (see
Figure 3) we build a simulated home environment with
multiple rooms, tables, and different objects on the tables.
The human subject cooperates with the robot to accomplish
different assigned tasks. Developing and testing in a simu-
lated environment makes it easier to isolate BCI application
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(a) User Input

(b) Navigation

(c) Vision

(d) Manipulation

Fig. 5: Stages of the Table Clean-up Experiment. Left Column: shows live images of the running system. Right Column:
shows what is seen by the user. (a) First the robot queries the user to determine which table to approach. (b) The robot
autonomously navigates to the indicated table. (c) Visual processing to analyze objects on the table occurs. Object entities on
the table are autonomously segmented out and presented to user to choose which object to pick up. (d) Grasp and trajectory
planning are done to autonomously determine how to pick the object, and the robot picks up the object. Next it repeats a
similar cycle by asking the user where to put the object.
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development and provides a codebase and framework similar
to the actual system. This work demonstrates the use of a
simulated world as a test-bed for developing BCI-enabled
robotic systems and as a way to benchmark and compare
BCI modalities applied to robotics. We will fully explore the
latter point in a future work to compare multiple and hybrid
BCI technologies in a similar simulated robotic environment.

Random Task Generation: Different subjects can under-
take the experiments a variable number of times. To increase
the variation of the experimental tasks and increase user
engagement, we use a simple task generator to assign slightly
different tasks to the user. An example task is: ”Get the robot
to pick object [x] from room [y] and place on table [w] in the
room [z].” Each of the specific options are randomly picked
at the start of a given experiment.

We ran the simulated experiments on two subjects and this
revealed the appropriate parameters needed to have a reliable
system. For example, we observed that we could achieve 100
percent SSVEP classification accuracy when the number of
options were 2 or 3, and the accuracy drops to 75% with 4
options. With the help of the simulated experiments we are
able to build a system that works reliably in the real world
as described below.

B. Real-World Experiments

Table Clean Up: This task is shown in Figure 5. The user
guides the robot to clear objects from a table in a particular
order; the robot can either deliver the object to the human
or store it away to different locations. While the robot is
able to autonomously do parts of this task, it still needs
control/guidance to resolve issues such as where the object
is in the environment; which of multiple objects to grasp and
pick-up; and where to deliver the grasped object. The robot
communicates with the user through the BCI to obtain this
information at different stages until task completion. Figure 2
shows the flow of the experiment. Recent robotic applications
in the travel, tourism and hospitality industries [35] can be
cast in a similar hierarchical structure.

Figure 5c shows a table with two objects that each subject
had to clear by cooperating with the robot. Once the clean
up task is assigned to the robot, the user tells the robot
which table to clear (Figure 5a); the robot autonomously
navigates to the table (Figure 5b), and runs vision processing
to identify the objects on the table (Figure 5c), these are
presented as options to the user. After which the robot does
grasp/trajectory planning to pick up the selected object. Then
the user directs the robot to a new location. This process is
repeated to pick the remaining object and place on a different
table. Note that this time, there is only one object on the table
and the user is not queried to make a choice.

Evaluation: We ran the described experiments on seven
subjects. For each subject, we ran the experiment three
times and all subjects were able to complete the task. The
experimental runs are evaluated based on the following
metrics:

• BCI Success Rate (User Input Detection): The reliability
of the system is highly dependent on the ability to pick

TABLE I: User study results for table cleanup task.

Subject # of Trials SSVEP Classification Success
(# successful queries / # queries)

1 3 15/15 (100%)
2 3 11/12 (91.7%)
3 3 11/12 (91.7%)
4 3 14/14 (100%)
5 3 15/15 (100%)
6 3 14/15 (93.3%)
7 3 15/15 (100%)

Total: 95 / 98 (96.9%)

the user’s interest (Table I). The BCI system was very
reliable, allowing the user to choose the correct option
95/98 times (96.9%).

• Mean Time Distribution Between Stages: We record the
amount of time it takes to complete each stage (BCI-
recording, navigation, grasping, manipulation). Figure 6
shows the time distribution among the different stages
of the experiments and also an idea of how much time
is shared between the user and the robot. The amount of
time the user spends instructing the robot (12 seconds)
is much smaller than the robot takes to plan and execute
the main action of each of the stages. Figure 7 shows
how accuracy changes as we decrease the duration of
recorded BCI signals to help identify optimal recording
time. Reducing this time to even 6 seconds shows little
loss in accuracy.

• Mean Time to Completion: The total time to accomplish
a task ranges from 439s to 543s (mean = 481.3s)

Discussion Two of the subjects initially misunderstood
the second lap of the task and sent the robot to the wrong
table (the BCI choice though was correct given the user’s
incorrect assumption). Their subsequent runs went according
to the experiment description. From the shared autonomy
perspective, there were 7 subjects running 3 trials involving
picking up 2 objects for a total of 42 grasps. In 11 cases, the
drill was dropped by the robot since it was fairly heavy. In
these cases, the task completion time was measured as if the
drop did not occur. Once we encountered this problem, we
modified the grasp planner to perform a more robust grasp.
While not implemented, the robot can sense this failure and
could initiate another choice task to pick up the object. Twice
we had to end the experiment on the third trial because of
poor signal classification which we later found was due to
low battery power on the wireless EEG device. We note that
the effectiveness of the EEG can be very sensitive to the
tightness and placement of the cap. An impedance test is
run after putting the EEG cap on the subject to confirm that
there is good electrical contact with the scalp. Getting the
impedance in a good range typically takes some adjustment
to the cap after which there is consistent and reliable signal
classification. A portable EEG device that is faster to set up
will be a big boost to the BCI research field.

V. CONCLUSIONS
In this paper, we have demonstrated the viability of a

reliable BCI-enabled home-assistant robot utilizing shared

224



Fig. 6: Mean Time Distribution Between Stages for Table
Clean-up Experiment.

Fig. 7: Prediction Accuracy versus BCI Signal collection
duration.

autonomy. Our task level shared autonomy system which
only involves the user at discrete times during the task is
potentially an improvement over the continuous control of
the robot which can be burdensome to the user. We believe
that this work also demonstrates an application of BCI to
assistive robotics and the framework bears the potential to
enable a wider range of BCI applications.
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